

Acal BFi kOr

Custom Services for Magnetic Components

Specification for Soft Magnetic Material

Material: kOr 140 / kOr 140HF

rev. 1 page 1

Nominal data:

	Symbol	Unit		Conditions	
Chemical composition		at%	l F	Fe ₇₅ Cu ₁ (SiBNbMo) ₂₄	
Saturation flux density	B _{sat}	mT	1400	H > 5000 A/m	25°C
(saturation induction)			1300	H = 200 A/m	25°C
			1220	H = 200 A/m	100°C
Curie Temperature	T _c	°C	600		
Resistance	ρ	μΩm	1,15		
Density	d	g / cm ³	7,4	annealed	
Saturation magnetostriction	λ _S	ppm	~3	annealed	

Initial Permeability (uncoated)	μ_{i}		30.000 - 70.000	adjustable ¹⁾ 25°C	
Remanence	B _r	mT	<200	μ = 30.000, 50 Hz	
Power losses (uncoated)	P_Fe	W/kg	4	10 kHz / 0,6 T	
			65	100 kHz / 0,3 T (kOr 140)	
			55	100 kHz / 0,3 T (kOr 140HF)	
Tape thickness ²⁾	d	μm	20	kOr 140	
			16	kOr 140HF	
Tape width	b	mm	2 - 65		
Filling factor (stacking factor)	FF	%	>80	kOr 140: b≤25 mm	
			>76	kOr 140: b>25 mm; all kOr 140HF	

Remarks:

1) Permeability μ_i can be adjusted in the range of about 30.000 - 70.000, corresponding to nominal values of 30.000 - 70.000 at 10 kHz.

A_L-values are calculated according to
$$A_L = \mu_r \mu_0 \frac{A_{Fe}}{l_{Fe}}$$

(A_L in mH, A_{Fe} in mm², I_{Fe} in mm,
$$\mu_0 = 4\pi \cdot 10^{-7}$$
 Vs/Am)

 A_{Fe} and I_{Fe} depend on the core dimensions and are indicated in the core datasheets.

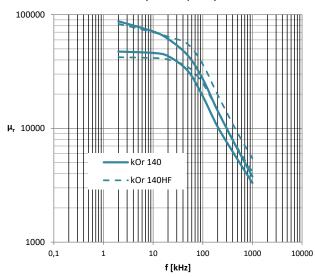
2) Effective tape thickness, calculated from length, width and density of a tape sample.

Geometrical tape thickness (measured with a tape stack using a gauge) is higher by 10% - 15% due to roughness.

Material characteristics (page 2) are measured with an annealed toroid core without gaps or cuts. For Cut Cores, see page 3 and power losses at page 2.

Material data of specific product specifications may differ due to geometry and dimension.

Acal BFi kOr

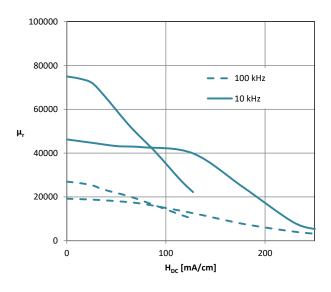

Custom Services for Magnetic Components

Specification for Soft Magnetic Material Material: kOr 140 / kOr 140HF

rev. 1

page 2

Permeability vs. Frequency



Notes:

 $N=1,\,U_{eff}=100\;mV$

Typical curves are given for cores with nominal permeability (10 kHz) of 40.000 and 70.000. Data for other premeabilities may be approximated using these data.

Relative Permeability vs. Bias Field

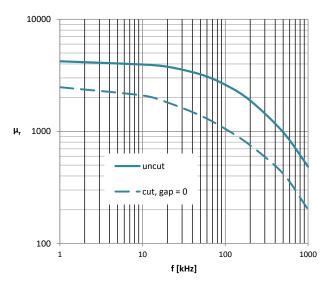
Notes:

$$N = 1, U_{eff} = 100 \text{ mV}$$
$$I_{DC} = H_{DC} \cdot I_{Fe}$$

Typical curves are given for cores with nominal permeability (10 kHz) of 40.000 and 70.000. Data for other premeabilities may be approximated using these data.

Acal BFi kOr

Specification for Soft Magnetic Material

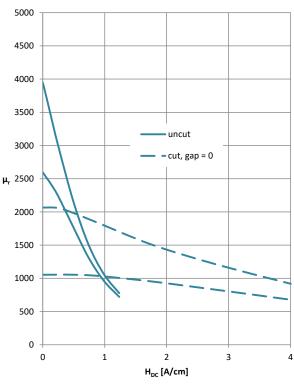

Material: kOr 140 / kOr 140HF

rev. 1

page 3

Curves for Cut Cores (Single cut)

Effective Permeability vs. Frequency


Notes:

Typical curves are shown. $N=1,\,U_{eff}=100\;mV$ Cores are impregnated with Epoxy

Influence of gap depends on the ratio of magnetic path length and gap width.

Displayed example refers to magnetic path length of 280 mm.

Effective Permeability vs. Bias Field

Notes:

Cores are impregnated with Epoxy

N = 1,
$$U_{eff}$$
 = 100 mV
$$I_{DC} = H_{DC} \cdot I_{Fe}$$
 upper curves: 10 kHz; lower curves: 100 kHz

Influence of gap depends on the ratio of magnetic path length and gap width.

Displayed example refers to magnetic path length of 320 mm.