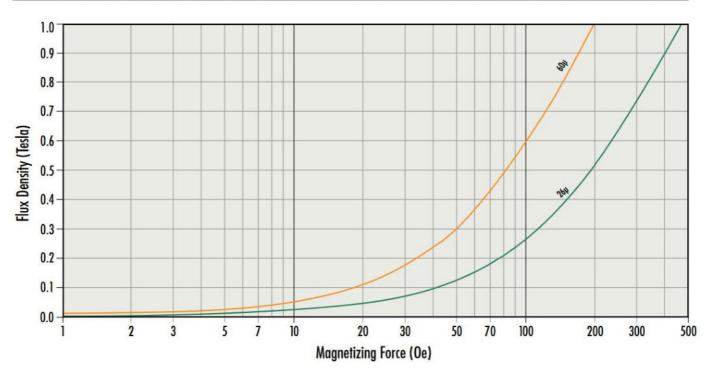


Edge™

Material Property Curves

- DC Magnetization Curves
- Core Loss Density Curves
- Permeability versus Temperature Curves
- Permeability versus DC Bias Curves
- Permeability versus Frequency Curves
- Permeability versus AC Flux Curves
- Core Selection Chart

DC Magnetization Curves



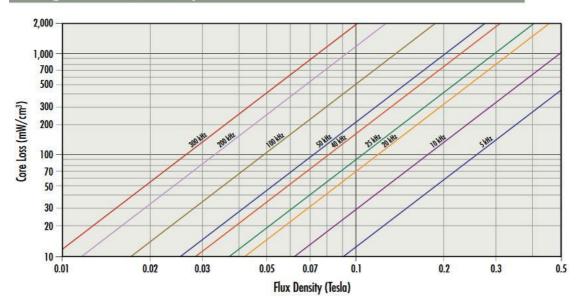
Fit Formula

$$B = \left[\frac{a + bH + cH^2}{1 + dH + eH^2}\right]^x \text{ where } B = \text{Tesla (T), H} = \text{Oersteds (Oe)}$$

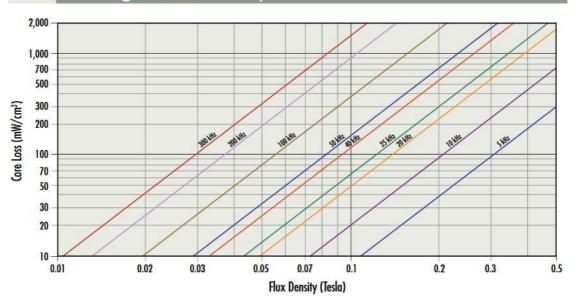
	Perm	a	Ь	c	d	e	х
Edge [™] Toroids	26µ	4.247E-02	2.153E-02	6.192E-04	1.157E-01	4.154E-04	1.951
	60µ	4.753E-02	1.352E-02	7.586E-04	7.251E-02	4.368E-04	1.538

Edge[™]Toroids

Core Loss Density Curves MAGNETICS

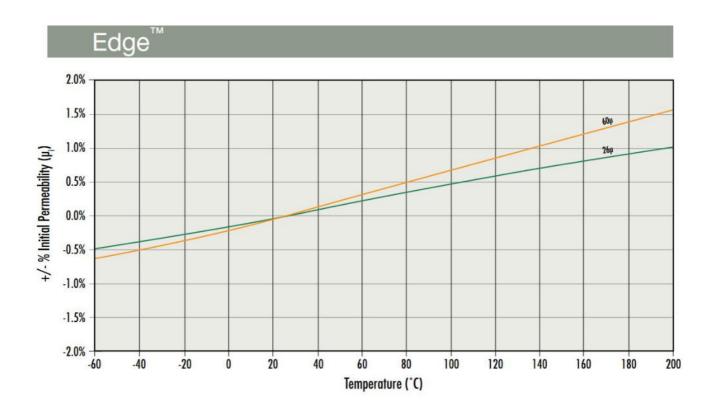


Fit Formula


 $P = aB^bf^c$ where B = Tesla (T), f = kilohertz (kHz)

	Perm	0	Ь	С
Edus™ Tavaida	26µ	278.59	2.218	1.236
Edge [™] Toroids	60µ	181.15	2.218	1.267

Edge[™] Toroids 26µ



Edge[™]Toroids 60µ

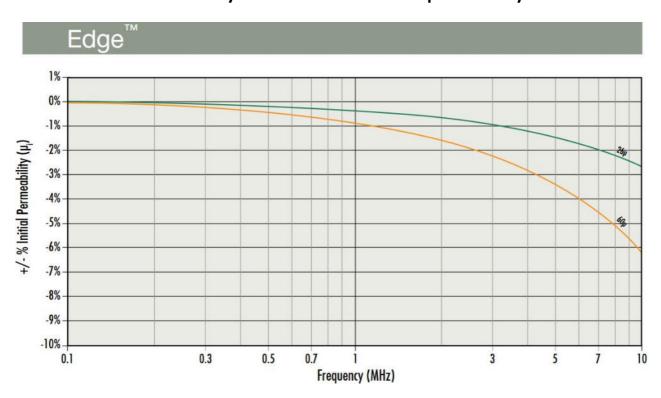
Permeability versus Temperature Curves

Fit Formula

Change compared with
$$\mu_{25^{\circ}C} = \frac{\mu_T - \mu_{25^{\circ}C}}{\mu_{25^{\circ}C}} = a + bT + cT^2 + dT^3 + eT^4$$

	Perm	a	Ь	c	d	e
Edge [™]	26µ	-1.532E-03	6.054E-05	7.220E-08	-6.624E-10	1.250E-12
	60µ	-2.134E-03	8.192E-05	1.643E-07	-1.242E-09	2.938E-12

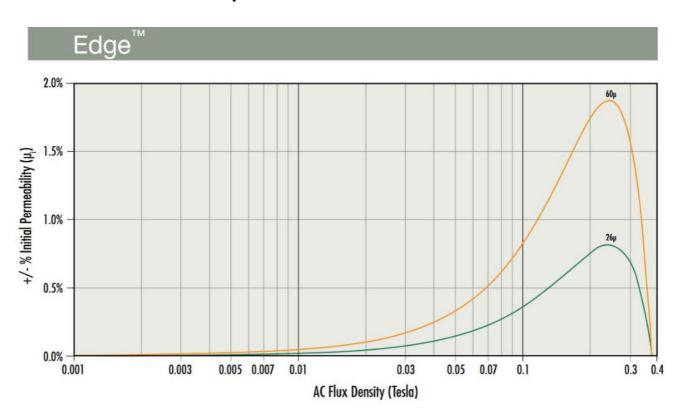
Permeability versus DC Bias Formula


Fit Formula

% initial permeability =
$$\frac{1}{(a + bH^{\circ})}$$
 where H is Oersteds (Oe)

	Perm	a	Ь	C
FJ™T:J.	26µ	0.01	3.646E-11	3.192
Edge Toroids	60µ	0.01	9.202E-10	3.044

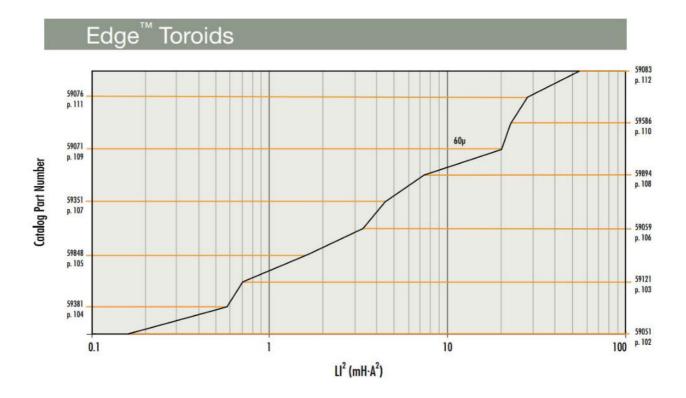
Permeability versus Frequency Curves


Fit Formula

 $\pm \%\mu_i = a + bf + cf^2 + df^3 + ef^4$ where f = megahertz (MHz)

	Perm	a	Ь	c	d	е
EJTM	26µ	0	-4.484E-03	3.175E-04	-1.379E-05	0
Edge ^{''''}	60µ	0	-1.035E-02	7.327E-04	-3.182E-05	0

Permeability versus AC Flux Curves


Fit Formula

 $\pm \%\mu_i = (a + bB + cB^2 + dB^3 + eB^4)$ where B is Tesla

	Perm	a	Ь	C	d	е
Ed-a TM	26µ	0	1.647E-02	2.767E-01	-8.511E-01	9.325E-08
Edge	60µ	0	3.801E-02	6.385E-01	-1.964E+00	2.152E-07

Core selection charts

