

Conditions

Specification for Soft Magnetic Material kOr 156

rev. 3 page 1

Nominal data

Value

Chemical composition		at%	~Fe ₈₀ Si ₇ B ₁₃			
Saturation flux density	B _{sat}	mT	1560	H > 300 A/m	25°C	
(saturation induction)			1470	H > 300 A/m	100°C	
Curie temperature	T _c	°C	400			
Resistance	ρ	μΩm	1,3			
Density	d	g / cm ³	7,18	annealed		
Saturation magnetostriction	λ_{S}	ppm	27	annealed		
Tape thickness ²⁾	d	μm	25			
Tape width	b	mm	5 - 130			
Filling factor (stacking factor)	FF	%	>85	b ≤ 25 m	nm	
			>80	b > 50 m	nm	
recommended max. storage and operational temperature		°C	150			

Unit

Initial permeability ¹⁾	μ_{i}		3000 - 15 000	in protection case 25°C		
			1500 - 5000	impregnated 25	5°C	
Power losses	P _{Fe}	W/kg	18	1 kHz / 1,0 T		
(impregnated, cut, no gap)			130	10 kHz / 0,6 T		
			1,0	16 kHz / 0,037 T		

Remarks:

Initial Permeability depends on annealing and finishing, adjustable.
 Given values refer to toroidal cores without gaps or cuts annealed in transverse field.

Symbol

 ${\rm A_L\text{-}values~are~calculated~according~to} \qquad \quad A_L = \mu_r \mu_0 \frac{A_{Fe}}{l_{Fe}}$

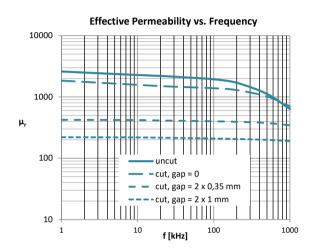
(A_L in mH, A_{Fe} in mm², I_{Fe} in mm, μ_0 = $4\pi \cdot 10^{-7}$ Vs/Am)

 A_{Fe} and I_{Fe} depend on the core dimensions and are indicated in the core datasheets.

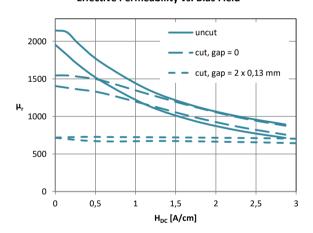
2) Effective tape thickness, calculated from length, width and density of a tape sample.

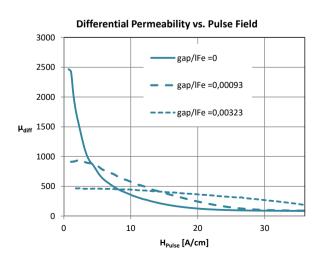
Geometrical tape thickness (measured with a tape stack using a gauge) is higher by 10% - 15% due to roughness.

Material data of specific product specifications may differ due to geometry and dimension.



Specification for Soft Magnetic Material kOr 156


rev. 3


page 2

Data for impregnated uncut and single cut cores of kOr 156, standard quality

Effective Permeability vs. Bias Field

Notes:

Typical curves are shown.

N = 1, U_{eff} = 100 mV

Cores are impregnated with Enox

Cores are impregnated with Epoxy

Nominal / minimum permeability for single cut cores without additional gap:

10 kHz: 1500 / 900 100 kHz: 1100 / 700

Influence of gap depends on the ratio of magnetic path length and gap width.

Displayed example refers to magnetic path length of 280 mm.

Notes:

Cores are impregnated with Epoxy

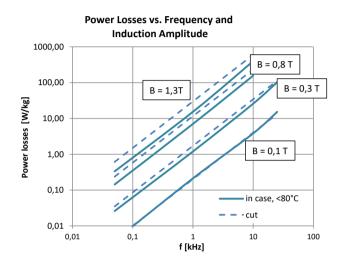
$$N = 1, U_{eff} = 100 \text{ mV}$$
$$I_{DC} = H_{DC} \cdot I_{Fe}$$

upper curves: 10 kHz; lower curces: 100 kHz

Influence of gap depends on the ratio of magnetic path length and gap width.

Displayed example refers to magnetic path length of 280 mm.

 $\mu diff\ monitored\ during\ pulse$



Specification for Soft Magnetic Material kOr 156

rev. 3

page 3

Nominal power loss data

Notes:

Excited with sinusoidal voltage of an amplitude corresponding to the indicated peak induction.

Losses increase under mechanical stress, e.g. coating, impregnation, and wire winding without sufficient protection.

Additional losses occur when cutting and introducing gaps.

Steinmetz-coefficients (nominal data):

$$P_{Fe}=k\,f^a\hat{B}^b$$

 P_{Fe} in W/kg, f in kHz, B in T Valid for B \leq 1 T, f = 5 ... 100 kHz. Valid for room temperature.

	Part Number	k	а	b
kOr 156 in case	156-TB	6,5	1,51	1,74
kOr 156 cut core standard quality	156-RI1C	18	1.3	1.95

Part number system:

cuts:

	material	-	shape	finish	-	size	-	perm./cuts	-version
example:	156 156	- -	T R	B I	-	252010 25	- -	10 2C	-1 -2

material: number denotes B_S in 10 mT; available materials see page 1

shape: T = toroid, R = rectangular, O = oval, E = E-shape, U = U-shape, I = bar

finish: B = protection box (usually plastic case), E = Epoxy coating, I = Epoxy impregnation,

EI = impregnation + coating, V = sprayed varnish, S = soft impregnation + glass fiber wrapped

size: toroid: OD ID H; rectangular: standard number or B C H; bar: A B C

permeability: for non-cut cores of kOr 156: minimum permeability in 1000

for cores with rectangular hysteresis loop (Z-loop): "Z"

for cut cores: number of cuts + "C" for bars: empty

version: version number (e.g. different coatings). This is not the revision state!